Radial Level Planarity Testing and Embedding in Linear Time
نویسندگان
چکیده
A graph with an ordered k-partition of the vertices is radial level planar if there is a strictly outward drawing on k concentric levels without crossings. Radial level planarity extends level planarity, where the vertices are placed on k horizontal lines and the edges are routed strictly downwards without crossings. The extension is characterised by rings, which are certain level non-planar biconnected components. Our main results are linear time algorithms for radial level planarity testing and for computing a radial level planar embedding. We introduce PQR-trees as a new data structure where R-nodes and associated templates for their manipulation are introduced to deal with rings. Our algorithms extend level planarity testing and embedding algorithms, which use PQ-trees.
منابع مشابه
Circle planarity of level graphs
In this thesis we generalise the notion of level planar graphs in two directions: track planarity and radial planarity. Our main results are linear time algorithms both for the planarity test and for the computation of an embedding, and thus a drawing. Our algorithms use and generalise PQ-trees, which are a data structure for efficient planarity tests. A graph is a level graph, if it has a part...
متن کاملTrack Planarity Testing and Embedding
A track graph is a graph with its vertex set partitioned into horizontal levels. It is track planar if there are permutations of the vertices on each level such that all edges can be drawn as weak monotone curves without crossings. The novelty and generalisation over level planar graphs is that horizontal edges connecting consecutive vertices on the same level are allowed. We show that track pl...
متن کاملA Planarity Test via Construction Sequences arxive fffversion
Optimal linear-time algorithms for testing the planarity of a graph are wellknown for over 35 years. However, these algorithms are quite involved and recent publications still try to give simpler linear-time tests. We give a simple reduction from planarity testing to the problem of computing a certain construction of a 3-connected graph. The approach is different from previous planarity tests; ...
متن کاملA Planarity Test via Construction Sequences
Linear-time algorithms for testing the planarity of a graph are well known for over 35 years. However, these algorithms are quite involved and recent publications still try to give simpler linear-time tests. We give a conceptually simple reduction from planarity testing to the problem of computing a certain construction of a 3-connected graph. This implies a linear-time planarity test. Our appr...
متن کاملPlanarity Testing for C-Connected Clustered Graphs
We present a linear time algorithm for testing clustered planarity of c-connected clustered graphs and for computing a clustered planar embedding for such graphs. Our algorithm uses a decomposition of the input graph based on SPQR-trees and is the first linear time algorithm for clustered planarity testing. We define a normal form of clustered embeddings and show that a clustered graph is clust...
متن کامل